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Abstract

The classical ElGamal encryption scheme is described
in the setting of the multiplicative group Z¤

p; the
group of units of the ring of integers modulo a prime
p, but it can be easily generalized to work in any …-
nite cyclic group G. Among the groups of most inter-
est in cryptography are the multiplicative groups F ¤

q

of the …nite …eld Fq: These require …nding irreducible
polynomials h(x) over Zp; for some prime p; and con-
structing the quotient group Zp[x]= < h(x) >= Fq:
Recently, El-Kassar et al. modi…ed the ElGamal
public-key encryption scheme from the domain of
natural integers, Z, to the domain of Gaussian in-
tegers, Z[i] by extending the arithmetic needed for
the modi…cations in this domains.

The ElGamal public-key cryptosystem is extended
to quotient rings of polynomials over …nite …elds hav-
ing cyclic group of units. The major …nding is that
the quotient rings need not be …elds. In particular,
when p is an odd prime, a second degree reducible
polynomial over Zp is used to easily implement the
extended ElGamal public-key cryptosystems and to
avoid …nding irreducible polynomials.

1 Introduction

The ElGamal encryption scheme is typically de-
scribed in the setting of the multiplicative group Z¤

p;

the group of units of the ring of integers modulo a
prime p, but it can be easily generalized to work in
any …nite cyclic group G. The security of the gen-
eralized ElGamal encryption scheme is based on the
intractability of the discrete logarithm problem in the
group G. The group G should be carefully chosen so
that the group operations in G would be relatively
easy to apply for e¢ciency. In addition, the discrete
logarithm problem in G should be computationally
infeasible for the security of the protocol that uses
the ElGamal public key cryptosystem. The groups
of most interest in cryptography are the multiplica-
tive groups F ¤

q of the …nite …eld Fq, including the
particular cases of the multiplicative groups Z¤

p , and
the multiplicative group F ¤

2m of the …nite …eld F2m

of characteristic two, see [6]. Also of interest is the
group of units Z¤

n where n is a composite integer such
that n is 2, 4, pt, or 2pt, where p is an odd prime and
t is an integer.

The classi…cation of all Gaussian integers modulo
¯ with a cyclic group of units was given by J. T. Cross
[1]. So, one may consider the cyclic group of units of
the quotient ring of Gaussian integers Z[i]= < ¯ >

where ¯ = 1 + i; (1 + i)2
; (1 + i)3

; p; (1+ i)p; ¼n; (1+
i)¼n; p is a prime integer of the form 4k + 3 and ¼ is
a Gaussian prime with ¼¼ is an integer of the form
4k + 1: Recently, El-Kassar et al. [3] described the
computational procedures using arithmetic modulo
Gaussian integers required for the extension of El-
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Gamal encryption scheme to the domain of Gaussian
integers.

In [7], J. L. Smith and J. A. Gallian, determined
the structure of the group of units of the quotient ring
Fq[x]= <f(x)> where f(x) is a polynomial in Fq[x]:
Using this decomposition, El-Kassar et al. [4], gave
a characterization of quotient rings of polynomials
over …nite …elds with a cyclic group of units. The
purpose of this paper is to use this classi…cation to
apply ElGamal encryption scheme to the setting of
Fq[x]= <f(x)> where f(x) is a reducible polynomial
in Fq[x]:

The rest of the paper is organized as follows: sec-
tion 2 describes the classical ElGamal scheme. Sec-
tion 3 presents the extension of ElGamal cryptosys-
tem to the domain of Guassian integers. Section 4
presents the classi…cation of quotient rings of polyno-
mials Fq[x]= < f(x) > having cyclic group of units.
Section 5 describes the extension of ElGamal cryp-
tosystem to the domain of polynomial rings over a
…nite …eld with cyclic group of units and section 6
presents a conclusion.

2 The Classical ElGamal Pub-
lic Key Encryption Scheme

The classical ElGamal cryptosystem, see [2] and [6],
can be described as follows. Let p be a large odd
prime integer and let Zp = f0; 1; 2; 3; :::; p¡1g: Then,
Zp is a ring under addition and multiplication modulo
p: Since p is prime, Zp is actually a …eld under these
operations. Moreover, Z¤

p = f1; 2; 3; :::; p ¡ 1g, the
multiplicative group of the ring integers modulo p,
is a cyclic group generated by some generator µ 6= 1
whose order is equal to p ¡ 1. That is, every element
of Z¤

p is a power of µ: Note that Zp is a complete
residue system modulo p and Z¤

p is a reduced residue
system modulo p: For further algebraic properties,
see [5] and [6].

Suppose that entity B wants to send a message m
to entity A: Entity B proceeds as follows: B gets
the public key generated by A, then computes the
ciphered message c = EA(m) and sends it to A for
decryption. To decipher it, A computes DA(c) = m:

Entity A generates the public-key by …rst generat-
ing a large random prime p and a generator µ of Z¤

p.
Then A chooses randomly an integer a, 1 · a · p¡2,
and computes µa(mod p): The public key is (p; µ; µa)
and A’s private key is a:

To encrypt the message m chosen from Zp, entity B
…rst obtains A’s public-key (p; µ; µa). Then B chooses
a random integer k, where 2 · k · p ¡ 2, computes
° = µk (mod p) and ± ´ m ¢ (µa)k (mod p): The ci-
phertext is c = (°; ±).

To decrypt the message c sent by B, A uses the
private key and recovers the message m by computing
°¡a:± (mod p).

Example 1 In order to generate the public key, en-
tity A selects the prime p = 359 and a generator
µ = 124 of Z¤

359: A chooses the private key a = 292
and computes µa = 124292 ´ 205 (mod 359). There-
fore, A’s public-key is (p = 359; µ = 124; µa =
205) and A’s private key is a = 292: To encrypt
the message m = 101; B selects a random integer
k = 247 and computes ° = 291 ´ 124247(mod 359)
and ± = 288 ´ 101:205247(mod 359): Then B sends
° = 291 and ± = 288 to A. We note that B
has 359 choices for m in Z359: Finally, A computes
°p¡1¡a = 29166 ´ 216(mod 359) and recovers m by
computing 216 ¢ 288 ´ 101 (mod 359):

3 ElGamal Public Key Cryp-
tosystem In the Domain of
Gaussian Integers

In [3], the ElGamal public key encryption scheme
was extended to the domain of Gaussian integers
Z[i] = fa + bija; b 2 Zg. Algorithms and exam-
ples illustrating these modi…cations were given. The
arithmetics in the domain of Gaussian integers were
applied to extend the ElGamal cryptosystem as fol-
lows. Let ¯ be a Gaussian prime integer and let G¯

be a set of representatives of the elements of the quo-
tient ring Z[i]= < ¯ > : Then, G¯ is a …eld un-
der addition and multiplication modulo ¯ having a
cyclic multiplicative group G¤

¯: Note that G¯ is a
complete residue system modulo ¯ and G¤

¯ is a re-
duced residue system modulo ¯: If ¯ = ¼;where
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q = ¼¹¼ is a prime integer of the form 4k + 1; then
G¼ = fa : 0 · a · q ¡ 1g = Zq; see [1]. This choice
will be excluded since the calculations in this case
are identical to those of the classical one. Hence, ¯ is
chosen to be a large prime integer p of the form 4k+3
so that G¯ = fa + bi : 0 · a · p ¡ 1; 0 · b · p ¡ 1g,
where the number of elements in G¯ is p2 and in G¤

¯

is Á(¯) = p2 ¡ 1. Hence, the cyclic group used in the
extended ElGamal cryptosystem has an order larger
than the square of that used in the classical ElGamal
cryptosystem with no additional e¤orts required for
…nding the prime p. Now, a generator µ of G¤

¯ is se-
lected and note that there are Á(p2 ¡ 1) generators
in G¤

¯: Then a random positive integer a is chosen so
that the public-key is (p; µ; µa): Since a is a power of
µ; then a must be less than the order of the group
power G¤

¯ which is p2 ¡ 1. This power of a is the
private key.

To encrypt a message m; we …rst represent it as an
element m in G¯: Then, a random positive integer
k is selected to be used as a power so that k is less
than p2 ¡ 1. The encrypted message is c = (°; ±)
where ° = µk and ± = m:(µa)k: Note that the values
of ° and ± must be elements of G¯ and hence must be
reduced modulo ¯: The message c is decrypted using
the private key a to compute °¡a:±:

Example 2 In order to generate the public-key, en-
tity A selects the Gaussian prime ¯ = 359 and a
generator µ = 1 + 11i of G¤

359: A chooses the pri-
vate key a = 86427 and computes µa modulo ¯;
which is µa = (1 + 11i)86427 ´ 323 + 295i mod-
ulo 359. Therefore, A’s public-key is (p = 359;
µ = 1 + 11i; µa = 323 + 295i) and A’s private key
is a = 86427: To encrypt the message m = 101, B
selects a random integer k = 115741 and computes
° = (1 + 11i)115741 ´ 149 + 117i modulo 359 and
± = 101 ¢ (323 + 295i)115741 ´ 147 + 209i modulo 359:
Then B sends ° = 149 + 117i and ± = 147 + 209i
to A. We note that B has 128880 choices for m in
G359. Finally, A computes

°¯2¡1¡a = (149 + 117i)42453 ´ 117 + 178i (mod
359); and recovers m by computing (117+178i)¢(147+
209i) ´ 101 modulo 359:

4 Polynomial Rings Over a
Field With Cyclic Group Of
Units

The generalized ElGamal public key cryptosystem
is usually studied in the setting of a …nite …eld
Fq and is based on working with the quotient ring
Zp[x]= hh(x)i ; where h(x) is an irreducible polyno-
mial over Zp[x]; q = pn; and p is a prime integer.
In the following, we extend the ElGamal public key
cryptosystem to the setting of quotient rings of poly-
nomials over a …eld, Fq[x]= hh(x)i ; having a cyclic
group of units where h(x) is not necessarily irre-
ducible. It is well known that if h(x) is an irre-
ducible polynomial of degree n; then Zp[x]= hh(x)i =
fa0 +a1x+ :::+an¡1xn¡1 : a0; a1; :::; an¡1 2 Zpg is a
…eld whose elements are the congruence classes mod-
ulo h(x) of polynomials in Zp[x] with a degree less
than that of h(x): Note that the representatives of the
elements of Zp[x]= hh(x)i form a complete residue sys-
tem modulo h(x) in Zp[x]. Moreover, Zp[x]= hh(x)i
is a …nite …eld of order pn and its nonzero elements
form its cyclic group of units, U(Zp[x]= hh(x)i); of
order Á(h(x)) = pn ¡ 1.

Now consider the factor ring Fq[x]= < f(x) >;
where Fq is a …nite …eld of order q and f(x) is a
polynomial of degree n: Then Fq[x]= < f(x) >=
fa0 + a1x + ::: + an¡1xn¡1 : a0; a1; :::; an¡1 2 Fqg
is a ring whose elements are the congruence classes
modulo f(x) of polynomials in Fq[x] with a degree
less than that of f(x): For each irreducible polyno-
mial h(x) of degree n over a …nite …eld Fq, the factor
ring Fq[x]= < h(x) > is a …nite …eld of order qn:
Its group of units is isomorphic to the cyclic group
Zqn¡1: In the case where f(x) is not irreducible over
Fq;the quotient ring Fq[x]= hf(x)i is not a …eld. How-
ever, f(x) can be selected so that the group of units
of the quotient ring Fq[x]= hf(x)i is cyclic. This can
be done by using the structure of the group of units
of Fq[x]= hf(x)i was given by Smith and Gallian [7].
Before we summarize their results we recall the fol-
lowing well-known results. For a …nite commutative
ring R with identity, we know from the fundamental
theorem of …nite abelian groups that U(R) is isomor-
phic to a direct product of cyclic groups. Also, if R
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is a direct sum of rings then its group of units is iso-
morphic to the direct product of the corresponding
group of units of each of the summands.

Theorem 3 If R = R1 © R2 © ::: © Ri then U(R) »=
U(R1) £ U(R2) £ ::: £ U(Ri):

Since Fq[x] is a unique factorization domain, then
f(x) can be written as a product of powers of irre-
ducible polynomials, h1(x)m1 ; h2(x)m2 ; :::; hk(x)mk ;
in Fq[x] and Fq[x]= < f(x) >»= Fq[x]= < h1(x)m1 >
©:::©Fq[x]= < hk(x)mk > : In the case where f(x) is
not irreducible over Fq; theorem 1 can be applied and
the problem reduces to that of …nding the structure
of U(Fq[x]= < h(x)m >); where h(x) is irreducible
over Fq: This result is stated as follows.

Lemma 4 If f(x) = h1(x)m1h2(x)m2 :::hk(x)mk ;
where all hi(x) are distinct irreducible polynomials
in Fq[x], then U(Fq[x]= < f(x) >) »= U(Fq[x]= <
h1(x)m1 >) £ ::: £ U(Fq[x]= < hk(x)mk >):

The following theorems simplify the problem fur-
ther.

Theorem 5 Let Fq be a …nite …eld and let h(x) be
an irreducible polynomial in Fq[x] . If a is a root of
h(x) and K = Fq(a), the extension of Fq by a; then
Fq[x]= < h(x)m >»= K[x]= < xm > :

Theorem 6 Let K be a …nite …eld with pn elements,
where p is prime. Then, for any positive integer m,

we have U(K[x]= < xm >) »=Zpn¡1 £
sY

i=1

n(ki¡1 ¡

2ki + ki+1)¤Zpi where s = minfh 2Zj ph ¸ mg;
ki = maxfh 2 Z j hpi < mg and t¤Zpi means Zpi

occurs in the product t times.

Note that the above lemma and theorems can be
combined together to classify the group of units of
any quotient ring of the form Fq[x]= < f(x) > :

Now we turn to the problem of classifying all
quotient rings of polynomials Fq[x]= < f(x) >
with cyclic group of units. The results obtained
in the remainder of this section are due to El-
Kassar and Chehade, see [?]. If h(x) is an irre-
ducible polynomial over Fq of degree n; we have that

Fq[x]= < h(x) > is a …eld of order qn = pnd: Hence,
U (Fq[x]= < h(x) >) is cyclic with order qn ¡ 1 =
pnd ¡ 1 and U (Fq[x]= < h(x) >) »=Zpnd¡1. Next
we consider the case where f(x) is a power of an
irreducible polynomial h(x); that is f(x) = h(x)m.
We note that if h(x) is of degree 1, then Fq[x]= <
h(x)m >»= Fq[x]= < xm > : Also note that in order

for U(Fq[x]= < xm >) »=Zpd¡1 £
sY

i=1

d(ki¡1 ¡ 2ki +

ki+1)¤Zpi to be cyclic, s = 1 since the order of each
Zpi is divisible by p: We have two di¤erent cases for
U (Fq[x]= < h(x) >) to be cyclic depending on the
characteristic of the …eld.

Theorem 7 Let Fq be a …nite …eld of order q = pd;
where p is a prime integer, and let hj(x) be irreducible
factor of f(x) in Fq[x] with deg hj(x) = dj : Then,
U(Fq[x]= < f(x) >) is cyclic if and only if one of the
following is true:

i- f(x) is irreducible and U(Fq[x]= < f(x) >) »=
Zqd¡1:

ii- f(x) = h(x)2 and U(Fq[x]= < f(x) >) »= Zp¡1£
Zp where h(x) is linear and Fq

»= Zp.

iii- f(x) = h1(x):h2(x):::hr(x) where q = 2; the d0
js

are pairwise relatively prime and U(Fq[x]= <
f(x) >) »= Z2d1 ¡1 £ Z2d2 ¡1 £ ::: £ Z2dr ¡1

iv- f(x) = h1(x):h2(x):::hr(x)2 where q = 2; the d0
js

are pairwise relatively prime, hr(x) is linear and
U(Fq[x]= < f(x) >) »= Z2d1 ¡1 £ Z2d2 ¡1 £ ::: £
Z2dr ¡1 £ Z2

5 ElGamal Public Key Cryp-
tosystem over Quotient
Rings of Polynomials over
Finite Fields

Now we describe the extended ElGamal encryp-
tion scheme over quotient rings of polynomials
Zp[x]= hh(x)i where h(x) is reducible. From the
study above we conclude that in order for the
group of units U(Zp[x]= hh(x)i); where p is an odd
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prime, to be cyclic, h(x) must be a square power
of only one linear irreducible polynomial. That
is, h(x) = h1(x)2, where h1(x) = ax + b. This
means that U(Zp[x]=

­
(ax + b)2

®
) is cyclic. But,

Zp[x]=
­
(ax + b)2

® »= Zp[x]= < x2 >. Hence, we
can extend the ElGamal scheme in the setting of the
group of units of the ring Zp[x]= < x2 >, of order
Á(x2) = p(p ¡ 1). We note that a polynomial f(x)
in Zp[x] belongs to the cyclic group U(Zp[x]=

­
x2
®
)

if and only if (f(x); x) = 1. This is equivalent to say
that x does not divide f(x), where f(x) is a linear
polynomial. Hence, U(Zp[x]=

­
x2
®
) = fc + dx j 1 ·

c · p ¡1; 0 · d · p ¡1g »= Zp¡1 £Zp. The extended
ElGamal cryptosystem in this setting is given next
through three algorithms.

First, to generate the corresponding public and
private keys, entity A should use the following al-
gorithm:

Algorithm 8 (Key generation)

1. Generate a large random prime p and a reducible
polynomial h(x) in Zp[x] as a square of a linear
polynomial and compute Á(x2) = p(p ¡ 1):

2. Find a generator ®(x) of the multiplicative group
U(Zp[x]=

­
x2
®
). That is, U(Zp[x]=

­
x2
®
) =

fe; ®(x); ®(x)2; ::::; ®(x)p2¡p¡1g.

3. Select a random integer a, 2 · a · Á(x2) ¡
1: Note that the integer a should be a natural
integer in the interval [2; p2 ¡ p ¡ 2]:

4. Compute ®(x)a (mod x2):

5. A’s public key is (p; x2; ®(x); ®(x)a); A’s private
key is a:

To encrypt a message m(x) 2 Zp[x]=
­
x2
®
, entity

B should use the following algorithm:

Algorithm 9 (Encryption scheme)

1. Obtain A0s authentic public key (p; x2; ®(x);
®(x)a).

2. Select a random integer k, 2 · k · Á(x2) ¡ 1:

3. Represent the message as a polynomial m(x) 2
Zp[x]=

­
x2
®
.

4. Compute °(x) = ®(x)k (mod x2): and ±(x) ´
m(x):(®(x)a)k (mod x2):

5. Send the ciphertext (°(x); ±(x)) to A.

To decrypt the ciphertext (°(x); ±(x)) sent by en-
tity B; entity A should use the following algorithm:

Algorithm 10 (Decryption scheme)

1. Receives the ciphertext (°(x); ±(x)) sent by entity
B.

2. Use the private key a to compute °(x)p2¡p¡a

(mod x2):

3. Recover the plaintext m(x) by computing
°(x)¡a:±(x) (mod x2):

The following theorem proves that the decryption
formula °(x)¡a:±(x) (mod x2) allows the recovery of
the original plaintext m(x).

Theorem 11 Given a generator ®(x) of the multi-
plicative group of the …eld Zp[x]=

­
x2
®

: De…ne °(x)
and ±(x) as in the algorithms such that °(x) = ®(x)a

(mod x2) and ±(x) ´ m(x):(®(x)a)k (mod x2). Let
s(x) = °(x)¡a:±(x) (mod x2), then m(x) = s(x).

Proof. Since °(x) = ®(x)a (mod x2),
where ®(x) is a generator of the multiplicative
group U(Zp[x]=

­
x2
®
), it follows that °(x) is in

U(Zp[x]=
­
x2
®
) so that (°(x); x2) = 1. There-

fore, using a version of Fermat’s little theorem
for polynomials over a …nite …eld, we have that
°(x)p(p¡1)¡1 ´ 1(mod x2): Then, °(x)(p2¡p¡1)¡a ´
°(x)¡a ´ ®(x)¡ak(mod x2) and thus °(x)¡a±(x) ´
®(x)¡ak:m(x):®(x)ak = m(x) (mod x2): Since m(x)
and s(x) are in the same complete residue system
modulo x2 and s(x) ´ m(x)(mod x2), we have that
m(x) = s(x): Hence, m(x) is recovered by reducing
°(x)¡a:±(x) modulo x2.

Example 12 For p = 3; U(Z3[x]=
­
x2
®
) = f1; 2; 1 +

x; 2 + x; 1 + 2x; 2 + 2xg and Á(x2) = 6. Note that
x2 is the zero in Z3[x]=

­
x2
®
. To …nd a genera-

tor to U(Z3[x]=
­
x2
®
), select the polynomial ®(x) =
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2 + x in U(Z3[x]=
­
x2
®
). The order Á(x2) = 6

has two prime divisors 2 and 3: Since (2 + x)2 =
4 + 4x + 4x2 = 4 + 4x ´ 1 + x 6= 1 over Z3 and
(2 + x)3 = 2 + 3x + x2 ´ 2 6= 1 over Z3: Hence,
®(x) = 2 + x is a generator. To generate the cor-
responding public and private keys, entity A should
…rst choose its own private key a = 4, then com-
putes ®(x)a = ®(x)4 = (2 + x)4 ´ 1 + 2x(mod x2).
Thus, A0s private key is a = 4 and public key is
(3; x2; 2 +x; 1+2x). To encrypt the message m(x) =
2x + 2, entity B selects randomly an integer k = 3;
then computes °(x) = ®(x)k = (2 + x)3 ´ 2(mod x2)
and ±(x) = m(x):(®(x)a)k = (2x + 2):((2 + x)4)3 ´
2+2x(mod x2). The ciphertext is c(x) = (°(x); ±(x)).
Hence, entity B sends the ciphertext (2; 2x + 2) to
entity A. To decrypt the sent ciphertext (2; 2x + 2),
entity B should use its own private key a = 4 to com-
pute °(x)¡a ´ °(x)p(p¡1)¡a = (2)6¡4 ´ 1(mod x2).
Finally, the plaintext m(x) can be recovered by com-
puting s(x) = °(x)¡a:±(x) ´ 1:(2x + 2) = 2x +
2(mod x2).

6 Conclusion

Using a characterization of quotient rings of polyno-
mials over …nite …elds with a cyclic group of units, the
ElGamal encryption scheme was extended to the set-
ting of Fq[x]= <f(x)> where f(x) is a reducible poly-
nomial in Fq[x]: Algorithms for the extended ElGa-
mal cryptosystem in the setting of Zp[x]=

­
x2
®

were
given along with their proofs. A numerical example
was provided to illustrate the new method.

We conclude this paper by considering the fol-
lowing problem. In addition to the new setting,
Zp[x]=

­
x2
®
, where p is an odd prime, one may con-

sider the case of extending ElGamal public-key cryp-
tosystem using the reducible polynomials in cases (iii)
and (iv) of theorem 7. Note that in this case one
needs to …nd irreducible polynomials over Z2; unlike
the case considered in this paper. Also note that if p
is an odd prime of the form 4k + 1; then Zp[x]=

­
x2
®

is not reduced to the classical case and when p is
of the form 4k + 3; one may use either the setting
Zp[x]=

­
x2
®

or Z[i]= hpi which are basically di¤erent:
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